
Adding a DNS Proxy to 128T
Many edge routers at small office/remote branch locations offer a DNS caching proxy feature, where
the router offers address to site clients using DHCP with its own address as the DNS server. This
document demonstrates how to incorporate the popular, ad-blocking DNS server pi-hole into your
128T to offer these same benefits, as well as improving the client experience.

Note: for a comprehensive list of the features and benefits of Pi-hole, visit www.pi-hole.net

Overview

We will use Docker to run Pi-hole in a container on the same host platform as the 128T. This affords
us the ability to upgrade and/or remove it simply with minimal impact to the 128T configuration or
host platform. As with other applications running on the Linux host platform, we will communicate
between Pi-hole and 128T/the outside world using Kernel Network Interfaces (KNI) to shuttle packets
back and forth.

Requirements

This overview assumes you are running your 128T on a hardware platform that meets 128
Technology's minimum requirements. The additional overhead of running a DNS proxy is nominal,
and should not impact normal operation of your 128T.

Software Dependencies

Docker is used to retrieve and manage the lifecycle of our DNS server. Install docker from the
Linux command line:

Configuration Dependencies

Pi-hole relies on using its own webserver lighttpd for management purposes. This will collide
with the 128T's internal web server. Given that it is fairly uncommon to manage a router
individually using its GUI (as opposed to via its Conductor), you can disable the webserver on an
indivudal 128T within its configuration:

sudo dnf install docker -y

http://www.pi-hole.net/

Launching Containers

Due to its packet forwarding architecture, 128T pins one or more CPU cores for exclusive use when it
starts. Likewise, Docker will assess the platform's CPU resources when it starts; by default, it inhibits
128T from dedicating core(s) to itself. In this section we'll limit the number of cores that Docker will
see, to ensure that there will be dedicated CPU cores available for the 128T's packet forwarding
engine.

Creating a Docker cgroup service

To limit the number of CPU cores available to Docker, we'll create a docker-cgroup.service file,

which will constrict the cpuset.cpus value to a small number of cores.

To see how many cores you have available on your machine, use lscpu as seen below:

This is a four core machine. We'll limit Docker to one core, leaving the rest available to 128T and the
Linux operating system.

Note: one core is ample room for Pi-hole to run. If you intend on running more containers, you
may need to adjust this value. That is beyond the scope of this how-to guide, however.

Create a file at /etc/systemd/system/docker-cgroup.service with the following contents:

admin@hari.burlington# config auth router burlington system services webserver

enabled false

admin@hari.burlington# commit

Are you sure you want to commit the candidate config? [y/N]: y

✔ Validating, then committing...

Configuration committed

[root@labsystem2 ~]# lscpu | grep list

On-line CPU(s) list: 0-3

[Unit]

Description=Create cgroup for docker

[Service]

Type=oneshot

ExecStart=/bin/sh -c ' \

 mkdir -p /sys/fs/cgroup/cpuset/dockercg.slice; \

 /bin/echo 3 > /sys/fs/cgroup/cpuset/dockercg.slice/cpuset.cpus; '

ExecStop=/bin/sh -c 'rmdir /sys/fs/cgroup/cpuset/dockercg.slice'

RemainAfterExit=true

The important pieces to point out are the value after /bin/echo ; in the sample above, we're using

3 , to reserve CPU core 3 to Docker. Adjust this as necessary for your environment. The other piece is

the last line, which causes Linux's systemd to load this service before it loads docker.service . This

ensures that the Docker engine is limited in the number of CPUs before it starts.

Configuring Docker to use the cgroup

We need to change the standard Docker configuration to reference this cgroup we've created. The
Docker configuration is located at /etc/docker/daemon.json . This file (which is { } by default),

needs to contain the following:

Enable the Services

To enable Docker (so that it starts at boot), use the following commands:

These changes require a reboot to take effect.

Verifying Docker is Running

After rebooting, use systemctl status docker to ensure it is running:

Here you can see it is enabled and active.

[Install]

RequiredBy=docker.service

[root@labsystem2 ~]# cat /etc/docker/daemon.json

{ "cgroup-parent" : "dockercg.slice" }

[root@labsystem2 ~]# systemctl daemon-reload

[root@labsystem2 ~]# systemctl enable docker-cgroup

[root@labsystem2 ~]# systemctl enable docker

[root@labsystem2 ~]# systemctl status docker

● docker.service - Docker Application Container Engine
 Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled; vendor

preset: disabled)

 Active: active (running) since Sun 2019-04-28 13:41:06 EDT; 5h 6min ago

 Docs: http://docs.docker.com

 Main PID: 1278 (dockerd-current)

 CGroup: /system.slice/docker.service

 ├─ 1278 /usr/bin/dockerd-current --add-runtime docker-runc=...

 ├─ 1365 /usr/bin/docker-containerd-current -l ...

Note, you may also want to check systemctl status 128T to make sure that 128T is also

enabled and running.

The DNS Container

The DNS container we're using is maintained by the people that produce Pi-hole. We'll tweak the
sample docker_run.sh from their Github repo to suit our needs here.

Aside from modifying the timezone (line 10), this file is otherwise ready to go as-is.

Start Pi-hole by running this script.

You can verify it is working by using the various docker commands:

Configuring DNS

There are several aspects to configuring DNS once the proxy is running locally:

Configuring the 128T system to use its own DNS
Configuring the DNS proxy to reference upstream DNS servers
Configuring the 128T to allow external client use

We will cover each of these in turn.

Configuring the 128T to use its own DNS

[root@hari ~]# mkdir -p /srv/docker/pihole

[root@hari ~]# cd /srv/docker/pihole

[root@hari pihole]# wget https://github.com/pi-hole/docker-pi-

hole/blob/master/docker_run.sh

[root@hari ~]# cd /srv/docker/pihole

[root@hari pihole]# ./docker_run.sh

[root@hari ~]# docker ps

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS

 NAMES

3341855b50a3 pihole/pihole:latest "/s6-init" 2 days ago

Up 2 days (healthy) 0.0.0.0:53->53/tcp, 0.0.0.0:80->80/tcp, 0.0.0.0:443-

>443/tcp, 0.0.0.0:53->53/udp, 67/udp pihole

https://github.com/pi-hole/docker-pi-hole

There are many ways to configure a system to reference DNS, but ultimately it boils down to a list of
nameserver entries in the file /etc/resolv.conf . On our reference system, the interfaces are

managed by the Linux application NetworkManager. Thus, we'll use NetworkManager (for example,
nmtui) to set the DNS server to use the localhost: 127.0.0.1.

Note: the contents of this file may be impacted by 128T when it starts. Changes to
NetworkManager configuration or /etc/resolv.conf should be done while 128T is stopped

on the host.

Configuring the Proxy for Upstream DNS

To configure the proxy's DNS, there are two portions: configure the Pi-hole with its upstream DNS
servers, and establish a route from Pi-hole to the chosen servers.

There are multiple ways to configure Pi-hole's upstream DNS servers. You can edit the
docker_run.sh script that launches the container (or if you choose to use docker-compose, its

YAML file), or you wait until Pi-hole is up and running and configure the upstream DNS servers using
its web interface.

The Pi-hole referenced in this document will mount ./etc-pihole/ to /etc/pihole/ on the

container, and this is where the upstream DNS servers are stored.

Adding Routes to the Upstream Servers

First, we need to get the packets from Pi-hole into 128T. This is done using the same kni254

interface that we use for host-service access (see below). Adding routes from Pi-hole up to 128T is

covered in the document "Linux Host Networking Through 128T." (The basic premise is to add a
route-kni254 file within /etc/sysconfig/network-scripts that sets the KNI device as the

default route for Linux.)

Note: some configurations, particularly older configurations, use a handcrafted KNI interface in
addition to kni254 . To use a hand-configured KNI interface, add a corresponding route from

Linux to use the KNI.

Once the Linux route is in place, you'll need to have a service to get to the DNS server(s) you selected,
and that service needs an access policy to allow the _internal_ tenant — the one automatically

assigned to all packets arriving on the kni254 interface.

While many configurations use a "quad 0" service (0.0.0.0/0) to represent a system-wide default
route, it is advisable to have a specific service for access to the upstream DNS servers. By way of
example:

[root@labsystem2 pihole]# cat /etc/resolv.conf

Generated by NetworkManager

nameserver 127.0.0.1

Add a service-route for this traffic on the system we're installing Pi-hole on, and this should be

enough.

Configuring External DNS Access

To allow external access to the DNS proxy, we'll use a host-service on the network-interface(s) we wish
to expose DNS service to. A host-service is a built-in means by which a 128T can take packets on

an "external" (forwarding) interface and funnel them down to the Linux host operating system (the
"host" in host-service) via a KNI that it creates at system launch.

Configuring external DNS access is therefore as simple as adding a host-service on the interface for
53/UDP (and possibly 53/TCP). To expose the web administration interface for Pi-hole, you'll need to
add one for 80/TCP.

Note: the built-in host-service for web only opens port 443, not port 80.

After adding this configuration, clients should be able to connect to the interface's IP at 53/UDP and
these packets will find their way to Pi-hole.

Testing DNS

In this particular example, we have Pi-hole running on a 128T host platform, and that platform's LAN
interface is 192.168.1.1.

From an external device:

*admin@labsystem1.fiedler (service[name=cloudflare-dns])# show

name cloudflare-dns

scope private

transport udp

 protocol udp

 port-range 53

 start-port 53

 exit

exit

address 1.1.1.1/32

address 1.0.0.1/32

access-policy _internal_

 source _internal_

 permission allow

exit

share-service-routes false

From the 128T's host platform:

k9:~ ptimmons$ dig @192.168.1.1 www.128technology.com

; <<>> DiG 9.10.6 <<>> @192.168.1.1 www.128technology.com

; (1 server found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 40101

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 1452

;; QUESTION SECTION:

;www.128technology.com. IN A

;; ANSWER SECTION:

www.128technology.com. 139 IN A 35.185.239.152

;; Query time: 88 msec

;; SERVER: 192.168.1.1#53(192.168.1.1)

;; WHEN: Tue Apr 30 21:33:05 EDT 2019

;; MSG SIZE rcvd: 66

[root@labsystem2 ~]# dig @127.0.0.1 community.128technology.com

;; Truncated, retrying in TCP mode.

; <<>> DiG 9.9.4-RedHat-9.9.4-61.el7_5.1 <<>> @127.0.0.1

community.128technology.com

; (1 server found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44653

;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 1452

;; QUESTION SECTION:

;community.128technology.com. IN A

;; ANSWER SECTION:

community.128technology.com. 86 IN CNAME 128technology.connectedcommunity.org.

128technology.connectedcommunity.org. 134 IN A 52.70.138.19

128technology.connectedcommunity.org. 134 IN A 52.6.165.57

;; Query time: 94 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Tue Apr 30 21:33:57 EDT 2019

;; MSG SIZE rcvd: 138

	Adding a DNS Proxy to 128T
	Overview
	Requirements
	Software Dependencies
	Configuration Dependencies

	Launching Containers
	Creating a Docker cgroup service
	Configuring Docker to use the cgroup
	Enable the Services
	Verifying Docker is Running

	The DNS Container
	Configuring DNS
	Configuring the 128T to use its own DNS
	Configuring the Proxy for Upstream DNS
	Adding Routes to the Upstream Servers

	Configuring External DNS Access

	Testing DNS

