
 Juniper Public

Juniper vJunos-switch Deployment on KVM
Author : Ridha Hamidi, Sr TME Manager, Juniper Networks, Cloud-Ready Data Center

Summary
Juniper released a new virtual test product named vJunos-switch, based on the traditional
Junos OS, and targeted for campus and data center switching use cases.

In this post, we share our experience with deploying and using this new test product on KVM,
and we do not aim at covering all cases, nor claiming that following our instructions will
guarantee you will successfully deploy and use vJunos-switch on your environments. We
expect that some of the instructions below will not apply to your particular case, but
hopefully it will cover the majority of the cases.

Abstract
KVM is one of the most popular free virtualized environments in the community, alongside
EVE-NG and GNS3. Therefore, it goes without saying that any virtual appliance must be
supported on KVM, and must have clear instructions on how to deploy it in this environment.

Introduction
In this post, we provide step-by-step instructions to help users:

- Prepare their KVM environment for vJunos-switch deployment
- Deploy vJunos-switch
- Troubleshoot some of the most common deployment issues
- Build a simple EVPN-VXLAN topology using multiple vJunos-switch instances
- Verify your work

We will try to provide comprehensive explanations about the procedure and explain all the
steps. However, for the sake of brevity, we will not address a few topics that might be of
interest for some users, like using vJunos-switch with ZTP. This can be the topic of a separate
post in the future.

Let’s get started.

Prepare your Environment
The server we used in our deployment has the following specs:

- Server: Supermicro SYS-220BT-HNC9R
- CPUs: 128 x Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz
- RAM: 256 GB DDR4
- SSD: 500 GB
- OS: Ubuntu 20.04.5 LTS

We will first verify that this server supports virtualization, then we will install KVM
components.

Update packages

user@host:~$ sudo apt-get update && sudo apt-get upgrade -y
<output truncated>

 Juniper Public

Check if the Server Supports Hardware Virtualization

user@host:~$ grep -Eoc '(vmx|svm)' /proc/cpuinfo
128

user@host:~$

In our case, our server has 128 CPUs that have “vmx” or “svm” flags enabled to support
virtualization

Check if VT is Enabled in the BIOS

This is done by installing and using the “kvm-ok” tool, which is included in the cpu-checker
package.

user@host:~$ sudo apt-get install cpu-checker -y
<output truncated>

user@host:~$ kvm-ok
INFO: /dev/kvm exists
KVM acceleration can be used
user@host:~$

Now that we have checked that the server is ready, we can proceed and install KVM.

Install KVM

There are several packages that need to be installed, some are mandatory, and some are
optional

• qemu-kvm: software that provides hardware emulation for the KVM hypervisor.
• libvirt-bin: software for managing virtualization platforms.
• bridge-utils: a set of command-line tools for configuring ethernet bridges.
• virtinst : a set of command-line tools for creating virtual machines.
• virt-manager: provides an easy-to-use GUI interface and supporting command-line

utilities for managing virtual machines through libvirt.

We included all mandatory and optional packages in the same install command

user@host:~$ sudo apt-get install qemu-kvm bridge-utils virtinst virt-manager -y

<output truncated>

Verify installation

user@host:~$ sudo systemctl is-active libvirtd
active
user@host:~$

user@host:~$ virsh version
Compiled against library: libvirt 6.0.0
Using library: libvirt 6.0.0
Using API: QEMU 6.0.0
Running hypervisor: QEMU 4.2.1
user@host:~$

 Juniper Public

user@host:~$ apt show qemu-system-x86

Package: qemu-system-x86
Version: 1:4.2-3ubuntu6.24
Priority: optional
Section: misc
Source: qemu
Origin: Ubuntu
<output truncated>

Now that KVM is installed and up and running, we can proceed and deploy vJunos-switch.

Deploy vJunos-switch on KVM

Pre-requisite Tips

There are a few pieces of information to know about Juniper vJunos-switch before you start
building your virtual lab. These are the most important ones:

- vJunos-switch is not an official Juniper Networks product, it is a test product, so it is
neither sold nor officially supported by Juniper’s TAC, hence the reason for writing
this post. If you run into any issues, you can only rely on yourself and the Juniper
community. Juniper Networks makes vJunos-switch available for free to download
and use with no official support.

- Use vJunos-switch for feature testing only.
- Do not use vJunos-switch for any scaling or performance tests.
- Do not use vJunos-switch in production environments.
- It is recommended to join this Juniper Networks community if you need further

support Juniper Labs Community.
- vJunos-switch instance is a nested virtual appliance, that is composed of one single

VM that nests both Control and Data Planes, hence vJunos-switch is limited to
deployment on bare metal servers only, so do not attempt to deploy vJunos-switch
inside another VM, like on EVE-NG running as a VM in another virtualized
environment, like ESXi. Doing so will lead to very slow behavior and very poor
performance, if at all it works, so do so at your own risk.

- Default login of vJunos-switch is root with no password.
- vJunos-switch must be provisioned with at least one vNIC for the management

interface, and as many vNICs as there are data plane interfaces, up to 96 max, and 64
only in the current release 23.1R1.8.

- it is our experience that vNICs are more reliable if you configure them to use virtio
driver. We have not experienced any issue when using this driver, instead of the other
ones, like e1000.

- There is no license to use vJunos-switch, so all features should work without entering
any license key, even though some features will trigger warnings about missing
licenses. You can ignore those warning and move on.

- You do not need to have an account with Juniper support to have access to the
download page. You only need to agree to the license terms to start downloading the
image.

Now that all these notes are read and well understood, we're ready to deploy our first
vJunos-switch, knowing all limitations and restrictions.

 Juniper Public

Download vJunos-switch Image

vJunos-switch image can be downloaded from the official Juniper support page
https://support.juniper.net/support/downloads/?p=vjunos.
vJunos-switch documentation can be found at this link
https://www.juniper.net/documentation/product/us/en/vjunos-switch.

At the time of writing this post, the latest vJunos-switch release is 23.1R1.8.

Note that in addition to vJunos-switch images, to build the topology that we used in this
post, you will also need a Linux image to deploy host VMs to be connected to vJunos-switch
instances for connectivity testing purposes. The exact type and version of these Linux
instances are not important, but if you want to have a good user experience, look for a light
weight Linux distribution that supports installing packages for protocols like LLDP and LACP.
For this post, we did not need such protocols, so we used cirros-0.5.2 from
https://download.cirros-cloud.net/.

Deploy vJunos-switch Instances
For this post, we will deploy the following fabric topology by using shell scripts.

We will deploy the following topology

Given that the downloaded vJunos-switch files are disk images (.qcow2) you must make as
many copies as there are vJunos-switch instances to avoid attaching all vJunos-switch
instances to the same disk image. This will take up some disk space, so plan your setup
accordingly. We will put these disk image copies under the default directory
/var/lib/libvirt/images. The following bash script will help make these copies.

(copy-images.sh)
#!/bin/bash
sudo cp cirros-0.5.2-x86_64-disk.img /var/lib/libvirt/images/host-1.img

spine-1

leaf-1

spine-2

leaf-2

host-1 host-2

 Juniper Public

sudo cp cirros-0.5.2-x86_64-disk.img /var/lib/libvirt/images/host-2.img
sudo cp vjunos-switch-23.1R1.8.qcow2 /var/lib/libvirt/images/vjunos-switch-
23.1R1.8.qcow2
sudo qemu-img create -F qcow2 -b /var/lib/libvirt/images/vjunos-switch-
23.1R1.8.qcow2 -f qcow2 /var/lib/libvirt/images/leaf-1.qcow2
sudo qemu-img create -F qcow2 -b /var/lib/libvirt/images/vjunos-switch-
23.1R1.8.qcow2 -f qcow2 /var/lib/libvirt/images/leaf-2.qcow2
sudo qemu-img create -F qcow2 -b /var/lib/libvirt/images/vjunos-switch-
23.1R1.8.qcow2 -f qcow2 /var/lib/libvirt/images/spine-1.qcow2
sudo qemu-img create -F qcow2 -b /var/lib/libvirt/images/vjunos-switch-
23.1R1.8.qcow2 -f qcow2 /var/lib/libvirt/images/spine-2.qcow2

Using “qemu-img create” instead of a simple “cp” allows to have much smaller disk images, as
shown below, which is good if you have a limited disk space.

user@host:~$ sudo ls -la /var/lib/libvirt/images/
sudo: unable to resolve host host
total 5716108
drwx--x--x 2 root root 4096 Mar 3 00:17 .
drwxr-xr-x 7 root root 4096 Feb 26 03:40 ..
-rw-r--r-- 1 libvirt-qemu kvm 36241408 Mar 3 00:23 host-1.img
-rw-r--r-- 1 libvirt-qemu kvm 36241408 Mar 3 00:36 host-2.img
-rw-r--r-- 1 libvirt-qemu kvm 502726656 Mar 3 19:24 leaf-1.qcow2
-rw-r--r-- 1 libvirt-qemu kvm 495648768 Mar 3 19:24 leaf-2.qcow2
-rw-r--r-- 1 libvirt-qemu kvm 490799104 Mar 3 19:24 spine-1.qcow2
-rw-r--r-- 1 libvirt-qemu kvm 509935616 Mar 3 19:24 spine-2.qcow2
-rw-r--r-- 1 libvirt-qemu kvm 3781951488 Mar 3 00:17 vjunos-switch-23.1R1.8.qcow2
user@host:~$

We will start by creating the networks of the above topology first then the create the virtual
machines after, because this way, VMs can be effectively connected to the appropriate
networks immediately when they boot up. It is our experience that when we create the VMs
first, then the networks after, we need to reboot the VMs once more for connections to
networks to take effect.

To deploy a network, we start by creating its xml definition file. The following is a sample
network xml file

(leaf1-spine1.xml)
<network>
 <name>leaf1-spine1</name>
 <bridge stp='off' delay='0'/>
</network>

then we execute the following commands to create a persistent network, and configure it to
start automatically when libvirt daemon is restarted

user@host:~$ virsh net-define leaf1-spine1.xml
Network leaf1-spine1 defined from leaf1-spine1.xml

user@host:~$ virsh net-start leaf1-spine1
Network leaf1-spine1 started

user@host:~$ virsh net-autostart leaf1-spine1
Network leaf1-spine1 marked as autostarted

user@host:~$ virsh net-list
 Name State Autostart Persistent
--
 default active yes yes
 leaf1-spine1 active yes yes

 Juniper Public

user@host:~$

Note that we used "net-define" and not "net-create" because the former makes the network
persistent, whereas the latter makes it transient, that is non persistent across reboots.
The reverse commands to delete the above network are the following:

user@host:~$ virsh net-destroy leaf1-spine1
Network leaf1-spine1 destroyed

user@host:~$ virsh net-undefine leaf1-spine1
Network leaf1-spine1 has been undefined

user@host:~$

The previous commands will preserve the xml definition file, so you can edit it again and start
over.

We used the following bash script to create all the networks we need in this lab setup

(create-networks.sh)
#!/bin/bash
echo "<network>" > macvtap.xml
echo " <name>macvtap</name>" >> macvtap.xml
echo " <forward mode='bridge'>" >> macvtap.xml
echo " <interface dev='eno1'/>" >> macvtap.xml
echo " </forward>" >> macvtap.xml
echo "</network>" >> macvtap.xml
virsh net-define macvtap.xml
virsh net-start macvtap
virsh net-autostart macvtap
for network in leaf1-host1 leaf2-host2 leaf1-spine1 leaf1-spine2 leaf2-spine1
leaf2-spine2
do
 echo "<network>" > $network.xml
 echo " <name>$network</name>" >> $network.xml
 echo " <bridge stp='off' delay='0'/>" >> $network.xml
 echo "</network>" >> $network.xml
 virsh net-define $network.xml
 virsh net-start $network
 virsh net-autostart $network
done

After completing the previous task for all networks with your preferred method, you should
see the following output

user@host:~$ virsh net-list
 Name State Autostart Persistent
--
 default active yes yes
 leaf1-host1 active yes yes
 leaf1-spine1 active yes yes
 leaf1-spine2 active yes yes
 leaf2-host2 active yes yes
 leaf2-spine1 active yes yes
 leaf2-spine2 active yes yes
 macvtap active yes yes

user@host:~$

Deploy vJunos-switch

 Juniper Public

There are multiple ways to deploy vJunos-switch instances on KVM, one can name at least
these three:

- virt-manager : deploy all VMs by using KVM GUI
- virsh define/create : these methods require creating an XML definition file of each

VM
- virt-install : CLI based method. One needs only to specify the deployment parameters

of VMs

virt-manager procedure works fine for small setups. The GUI is very intuitive, which makes
this method less error prone. However, like most GUI-based tools, it does not scale well if
you need to create a large number of VMs.

virsh define/create require creating an xml definition file for each VM. It is highly
recommended that you start with an existing XML file from a previously created and working
VM, and not start from scratch, if you use virsh define/create. If you do not have any XML
file to start with, you can create a VM by using the virt-manager, then copy its XML file
located under /etc/libvirt/qemu/, or generate it by using the command

virsh-dumpxml vm_name > vm_name.xml

Note that Juniper provides a vJunos-switch xml file on the Downloads page, alongside a
vJunos-switch meta disk script for its initial configuration.

Even though all 3 methods would work just fine, depending on the user’s familiarity with each
method, in this post, we’re going to use virt-install, because we can put all commands inside a
shell script, and repeat the operation if anything is not working as expected. Like with any
new product, it might take a few tries before you get everything right with all the parameters.

Below is a sample virt-install command to deploy one of the vJunos-switch VM:

virt-install \
 --name leaf-1 \
 --vcpus 4 \
 --ram 5120 \
 --disk path=/var/lib/libvirt/images/leaf-1.qcow2,size=10 \
 --os-variant generic \
 --import \
 --autostart \
 --noautoconsole \
 --nographics \
 --serial pty \
 --cpu IvyBridge,+vmx \
 --sysinfo smbios,system_product=VM-VEX \
 --network network=macvtap,model=virtio \
 --network network=leaf1-spine1,model=virtio \
 --network network=leaf1-spine2,model=virtio \
 --network network=leaf1-host1,model=virtio

Below is a sample virt-install command to deploy one of the Cirros host VMs:
virt-install \
 --name host-1 \
 --vcpus 1 \
 --ram 1024 \
 --disk path=/var/lib/libvirt/images/host-1.img,size=10 \
 --os-variant generic \
 --import \
 --autostart \
 --noautoconsole \

 Juniper Public

 --nographics \
 --serial pty \
 --network network=macvtap,model=virtio \
 --network network=leaf1-host1,model=virtio

A few comments about the command above:

- “--serial pty” allows you to access the guest VM's console from the host by using
"virsh console <vm_name>". Another alternative to allow access to guest VMs
from the host is via telnet by specifying, for example “--serial
tcp,host=:4001,mode=bind,protocol=telnet”, where 4001 is a tcp port that
is specific to the VM, so it must be different for each guest VM.

- The first interface of the VM is connected to “macvtap” bridge that connects to host’s
interface eno1. This way the VM will be connected to the same management network
as the host itself, so we can reach it directly without jumping to the host. Other
alternatives to how to manage the guest VM include the following:

o “--network
type=direct,source=eno1,source_mode=bridge,model=virtio” :
this works the same way than “macvtap” bridge

o “--network network=default,model=virtio” : this way, the VM will
be connected to KVM’s internal default network and will get an IP address via
DHCP from the default 192.168.122.0/24 subnet. To make the VM reachable
from outside, we need to configure the host for port forwarding.

Note that your host’s management interface name can be different than eno1 above, like
eth0 or something else, so please update the script accordingly.

We used a bash script to create the VMs needed in this lab setup. The script is not provided
here for brevity, but it executes the above virt-install command for as many times as there
are VMs with the specific parameters and interfaces.

Note that we provisioned each vJunos-switch with 4 vCPU and 5 GB of RAM.

You can delete a VM by using the following commands, for example

virsh shutdown leaf-1
virsh undefine leaf-1
sudo rm /var/lib/libvirt/images/leaf-1.qcow2

Once all VMs are deployed, you should see the following output:

user@host:~$ virsh list
Id Name State
--
42 leaf-1 running
43 leaf-2 running
44 spine-1 running
45 spine-2 running
46 host-1 running
47 host-2 running

user@host:~$

At this point, all VMs should be up and running, and should be reachable directly from the
outside without jumping on the host. However, vJunos-switch management interfaces run
DHCP by default, so we do not know at this point what IP addresses have been assigned to

 Juniper Public

nJunos instances. To that end, we must console to the instances either from the host by
using “virsh console” or telnet to the specific port, as explained above, or by using virt-
manager.
The vJunos-switch instances should reach each other once we complete the basic Junos
configurations. Let's verify that.

Verifications

Try accessing the console of one of the vJunos-switch instances by using the following
command

user@host:~$ virsh console leaf-1
Connected to domain leaf-1
Escape character is ^]

FreeBSD/amd64 (Amnesiac) (ttyu0)

login: root
Last login: Fri Mar 3 00:29:56 on ttyu0

--- JUNOS 23.1R1.8 Kernel 64-bit JNPR-12.1-20230307.3e7c4b6_buil
root@:~ #

The default credentials are "root" and no password.

Enable Junos CLI and verify that the dataplane is online

root@:~ # cli
root> show chassis fpc

 Temp CPU Utilization (%) CPU Utilization (%) Memory
Utilization (%)
Slot State (C) Total Interrupt 1min 5min 15min DRAM (MB)
Heap Buffer
 0 Online Testing 4 0 3 3 3 1023 19
0
 1 Empty
 2 Empty
 3 Empty
 4 Empty
 5 Empty
 6 Empty
 7 Empty
 8 Empty
 9 Empty
 10 Empty
 11 Empty

root>

Verify that 10 "ge" interfaces are present.

{root> show interfaces ge* terse
Interface Admin Link Proto Local Remote
ge-0/0/0 up up
ge-0/0/0.16386 up up
ge-0/0/1 up up
ge-0/0/1.16386 up up
ge-0/0/2 up up

 Juniper Public

ge-0/0/2.16386 up up
ge-0/0/3 up down
ge-0/0/3.16386 up down
ge-0/0/4 up down
ge-0/0/4.16386 up down
ge-0/0/5 up down
ge-0/0/5.16386 up down
ge-0/0/6 up down
ge-0/0/6.16386 up down
ge-0/0/7 up down
ge-0/0/7.16386 up down
ge-0/0/8 up down
ge-0/0/8.16386 up down
ge-0/0/9 up down
ge-0/0/9.16386 up down

root>

A vJunos-switch instance comes up with 10 ge-x/x/x interfaces by default, but you can
configure it with up to 96 ge-x/x/x interfaces by using the following command:

set chassis fpc 0 pic 0 number-of-ports 96

At the time of writing this post, vJunos-switch version 23.1R1.8 supports only 64 interfaces.
If you try to configure more interfaces, you will get the following error message:

[edit]
root@leaf-1# ...0/0/64 unit 0 family ethernet-switching
error: port value outside range 0..63 for '64' in 'ge-0/0/64': ge-0/0/64

[edit]
root@leaf-1#

This limitation will be removed in the subsequent releases.

Try accessing the console of one of the host VMs

user@host:~$ virsh console host-1
Connected to domain host-1
Escape character is ^]

login as 'cirros' user. default password: 'gocubsgo'. use 'sudo' for root.
cirros login: cirros
Password:
$

If you used an Ubuntu image for the host VMs, you may not have access to the console with
“virsh console”. If that's the case, access the console with virt-manager and make the
following changes in the guest VM:

sudo systemctl enable serial-getty@ttyS0.service
sudo systemctl start serial-getty@ttyS0.services

edit file /etc/default/grub of the guest VM and configure the following lines

GRUB_CMDLINE_LINUX_DEFAULT="console=tty0 console=ttyS0"
GRUB_TERMINAL="serial console"

then

 Juniper Public

sudo update-grub

At this point, you should be able to access the Ubuntu VMs with “virsh console”.

Now that all looks good and we're ready to start configuring our devices to build the EVPN-
VXLAN topology shown above.

Configuration

Base vJunos-switch Configuration

When a vJunos-switch instance comes up, it has a default configuration that needs to be
cleaned up before we proceed further. For example, the default configuration is ready for
ZTP, which we will not address in this post.

The following configuration should be the bare minimum needed to start using a vJunos-
switch instance, and you can delete everything else :

[edit]
root@leaf-1# show
Last changed: 2023-04-14 01:31:59 UTC
version 23.1R1.8;
system {
 host-name leaf-1;
 root-authentication {
 encrypted-password "*****"; ## SECRET-DATA
 }
 services {
 ssh {
 root-login allow;
 }
 netconf {
 ssh;
 }
 }
 syslog {
 file interactive-commands {
 interactive-commands any;
 }
 file messages {
 any notice;
 authorization info;
 }
 }
}
interfaces {
 fxp0 {
 unit 0 {
 family inet {
 dhcp {
 vendor-id Juniper-ex9214-VM64013DB545;
 }
 }
 }
 }
}
protocols {
 lldp {
 interface all;
 interface fxp0 {
 disable;

 Juniper Public

 }
 }
}

[edit]
root@leaf-1#

Once all vJunos-switch instances have the minimum configuration above entered and
committed, let us verify that the topology is built properly by verifying LLDP neighborship.

[edit]
root@leaf-1# run show lldp neighbors

[edit]
root@leaf-1#

[edit]
root@leaf-1# run show lldp statistics
Interface Parent Interface Received Unknown TLVs With Errors Discarded TLVs
Transmitted Untransmitted
ge-0/0/0 - 0 0 0 0
127 0
ge-0/0/1 - 0 0 0 0
127 0
ge-0/0/2 - 0 0 0 0
127 0

[edit]
root@leaf-1#

The output above shows that LLDP neighborship are not forming, and that the instance is
transmitting LLDP packets but is not receiving any. This is expected because, by default, IEEE
802.1D compliant bridges Linux bridges do not forward frames of link local protocols, like
LLDP and LACP. For reference, the destination MAC address used by LLDP is 01-80-C2-00-
00-0E.

Let’s checking the default value of the Group Forwarding Mask of one of the bridges

user@host:~$ cat /sys/class/net/virbr1/bridge/group_fwd_mask
0x0
user@host:~$

The zero value means that this bridge does not forward any link local protocol frames. To
change the bridge's behavior and force it to forward LLDP frames we need to set the 15th
bits of this 16-bit mask, specified by the rightmost 0xE in the MAC address, that is writing the
hex value 0x4000, or decimal value 2^14=16,384, to group_fwd_mask. Let's try it on all
bridges of this host.

We used the following shell script to accomplish that. Please adjust bridge and interface
numbers to your specific case ; use “brctl show” command to get the number of virbrX
bridges and vnetX interfaces

user@host:~$ brctl show
bridge name bridge id STP enabled interfaces
PFE_LINK 8000.000000000000 no
RPIO_LINK 8000.000000000000 no
docker0 8000.024236eb3574 no
virbr0 8000.525400499cd3 yes virbr0-nic
virbr1 8000.525400d33e1f no virbr1-nic
 vnet17

 Juniper Public

 vnet2
virbr10 8000.525400f3b32f no virbr10-nic
 vnet3
 vnet6
virbr11 8000.525400515275 no virbr11-nic
 vnet4
 vnet5
virbr12 8000.525400fc6995 no virbr12-nic
 vnet11
 vnet14
virbr13 8000.5254001353b6 no virbr13-nic
 vnet12
 vnet13
virbr2 8000.52540000b6ef no virbr2-nic
 vnet18
virbr3 8000.525400dc812d no virbr3-nic
 vnet0
 vnet9
virbr4 8000.525400703dbd no virbr4-nic
 vnet1
 vnet15
virbr5 8000.525400d5048a no virbr5-nic
 vnet10
 vnet7
virbr7 8000.5254004c3aa1 no virbr7-nic
 vnet16
 vnet8
virbr8 8000.525400fb9b9a no virbr8-nic
virbr9 8000.525400c7766f no virbr9-nic
user@host:~$

overwrite-mask.sh
#!/bin/bash
for i in {0..13}
do
 echo 0x4000 > /sys/class/net/virbr$i/bridge/group_fwd_mask
done

At this point, LLDP should be working fine on all vJunos-switch instances, as shown below

[edit]
root@leaf-1# run show lldp statistics
Interface Parent Interface Received Unknown TLVs With Errors Discarded TLVs
Transmitted Untransmitted
ge-0/0/0 - 10 0 0 0
170 0
ge-0/0/1 - 10 0 0 0
169 0
ge-0/0/2 - 0 0 0 0
167 0

[edit]
root@leaf-1# run show lldp neighbors
Local Interface Parent Interface Chassis Id Port info
System Name
ge-0/0/0 - 2c:6b:f5:19:f5:c0 ge-0/0/0
spine-1
ge-0/0/1 - 2c:6b:f5:a6:fc:c0 ge-0/0/0
spine-2

[edit]
root@leaf-1#

[edit]
root@leaf-1# run show lldp neighbors

 Juniper Public

Local Interface Parent Interface Chassis Id Port info
System Name
ge-0/0/0 - 2c:6b:f5:1a:65:c0 ge-0/0/0
spine-1
ge-0/0/1 - 48:cd:91:2e:05:d5 et-0/0/0
spine-2

[edit]
root@leaf-1#

Note that LLDP neighborship is not forming between leaf-1 and host-1, and that’s because
Linux does not include LLDP package by default. It can be installed on some Linux
distributions, but not on Cirros, that we used here.

root@leaf-1> show system information
Model: ex9214
Family: junos
Junos: 23.1R1.8
Hostname: leaf-1

root@leaf-1>

At this point, all vJunos-switch instances should be deployed and connected properly and you
should be able to start playing with your topology.

Have fun !

Conclusions
In this post, we shared the step to successfully deploy vJunos-switch virtual appliance. Our
purpose was to provide all the details to avoid running into issues that might cause long
troubleshooting sessions. We hope we achieved this goal.

Useful links
Juniper Networks software downloads -
https://support.juniper.net/support/downloads/?p=vjunos
Juniper vJunos-switch product page
https://www.juniper.net/documentation/product/us/en/vjunos-switch

Acknowledgements
Special thanks to the following individuals who helped in building and troubleshooting the
vJunos-switch setup we used for this post, and who also helped reviewing this post:

- Aninda Chatterjee
- Art Stine
- Kaveh Moezzi
- Shalini Mukherjee
- Yogesh Kumar

