Realizing Network Slices in IP/MPLS Networks

draft-bestbar-teas-ns-packet-00

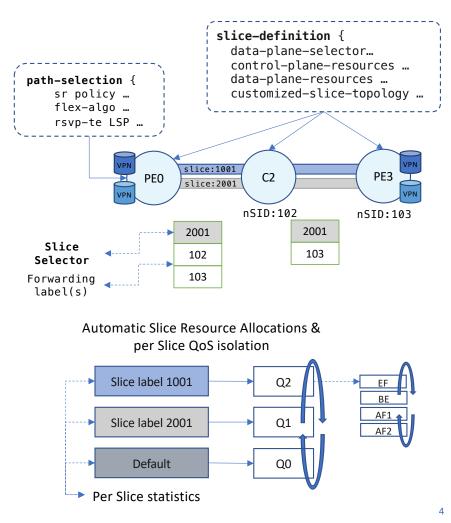
Tarek Saad Juniper Networks

Vishnu Pavan Beeram Juniper Networks

Contributors: Colby Barth, Srihari Sangli, Chandra Ramachandran

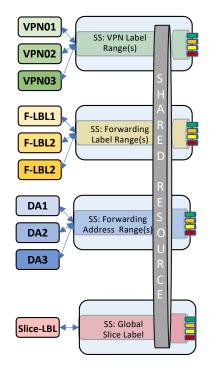
IETF-109, November 2020, Virtual

Agenda

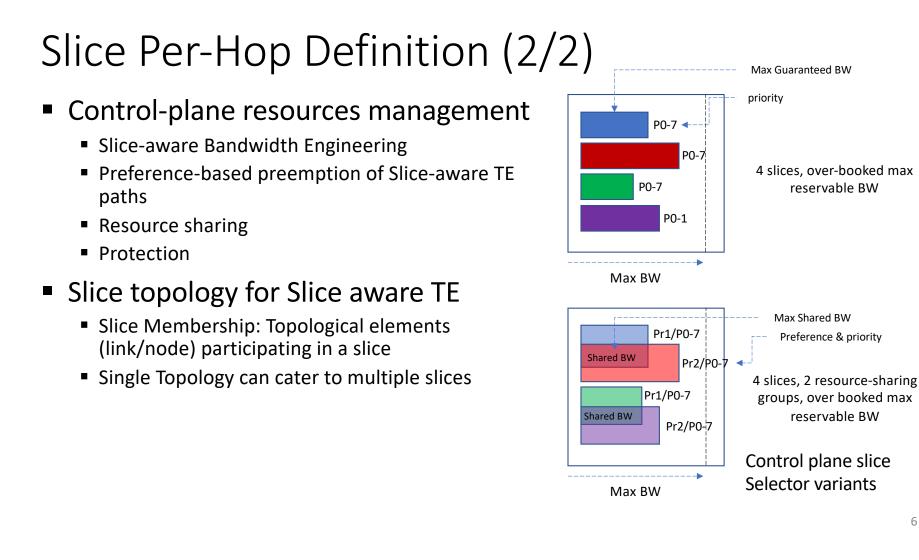

- Introduction
- Slice Per Hop Definition
- Solution approaches
- Next Steps

Introduction

- Solution to realize network slicing in IP/MPLS networks
 - Based on DiffServ principles
 - Slicing from a device and network resource level perspective
 - Ensure proper placement of paths and respective treatment of traffic traversing network slice resources
 - Agnostic to the path control technique used in the network slicing domain
- Multiple network slices can be realized on top of a shared physical IP/MPLS infrastructure network
 - Dynamically created and managed
- Traffic traversing shared network resources may require specific treatment to meet target SLOs
 - A Slice Selector within a packet identifies slice traffic
 - Device specific slice resources instantiated on-demand: Slice Queues and Slice PHB
- Placement of traffic on slice resources optimized based on network slice resource utilization
 - Slice-aware TE
- Differentiation of traffic within same network slice is also possible
 - Diffserv Class Selector (CS) in the packet distinguishes traffic within same slice

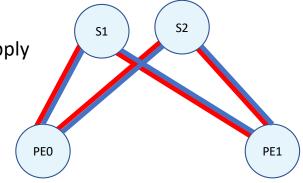

Solution Overview

- Approaches to network resource slicing:
 - Control plane slicing, Data plane slicing, mix of Control and Data plane slicing
 - Hybrid options possible
- An integral Slice Per Hop Definition, encompassing:
 - Data plane Slice Selector
 - Data plane resources (H-QoS PHBs)
 - Control plane resources (bandwidths, priorities, sharedresource groups)
 - Slice specific topology facilitating Slice aware TE
- Multiple options for Slice Per Hop Definition dissemination
 - Programmed via Netconf/gRPC interface(s)
 - Exchanged in IGP and/or BGP
 - Configured directly on device(s)
- Multiple options for path selection and control techniques within a Slice (SR Policy, Flex-algo, RSVP-TE LSP, ...)



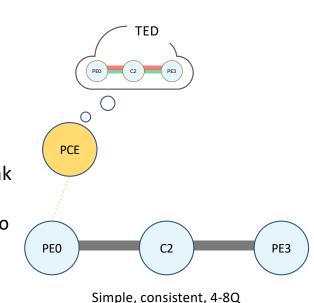
Slice Per-Hop Definition (1/2)

- Data plane Slice Selector
 - A range of MPLS forwarding labels (for each destination) mapping to a Slice
 - A range of MPLS VPN service labels mapping to a single Slice
 - A single Global label mapping to a Slice
 - A set of IP destinations mapped to a slice
 - A multi-field packet selector
- Data plane resources (H-QoS PHBs)
 - A Slice QoS profile or a reference to device local profile
 - Different profiles to multiple interfaces possible


Data plane Slice Selector variants

Data plane only network slicing

- Data plane network resource slicing
 - Slice Selector identifies packets belonging to a specific slice
 - Per slice CoS profile is applied on participating links and nodes
 - Transit nodes classify incoming traffic (e.g. using Slice label) and apply per slice scheduling
- Control plane
 - No control plane awareness of slice resources
 - No slice-aware path placement/TE
- Use-case
 - Suitable when no BW engineering is required and ECMP is leveraged between endpoints (e.g. Spine/Leaf deployment)
 - Does not address all network slice SLOs being standardized at IETF

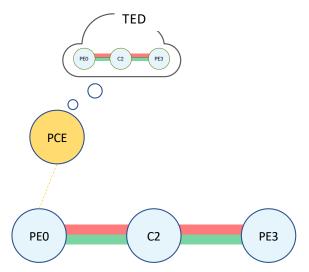


RED slice is 50% of each link

GREEN slice is 50% of each link

Control plane only network slicing

- Control plane network resource slicing
 - Link resources are sliced in control plane
 - Per slice link maximum and available BW
 - Ingress router/PCE forms per slice TED using the link-state
 - Slice-aware path computation and path placement
 - CSPF uses the slice aware TED to select optimal TE path
 - Control plane preemption in case of contention on a specific link resource
 - In case of degradation of LAG, control plane can preempt LSP(s) to avoid congestion
- Data plane
 - No per slice classification of traffic or per slice PHB on transit routers
 - Policing can happen on slice incoming traffic


Simple, consistent, 4-8Q PHBs may still be deployed

Compute & Resource management are Slice aware

Compute & resource management are Slice aware

Control and data plane network slicing

- Control plane and data plane network slicing
 - Combination of the previous two
 - Slice-aware TE enables ingress/PCE to do proper placement of LSPs based on per slice link available BW
 - Data plane Per-Hop Behavior on transit nodes provides guarantees in case of congestion on a link
 - Covers strict and shared resource slice isolation requirements

Slice label inferred PHB

Next Steps

- Slice-aware TE
 - Protocol Extensions -- Coordination with relevant drafts
- Request review and feedback

YANG Data Model for Network Slice Per-Hop Definition

draft-bestbar-teas-yang-ns-phd-00

Tarek Saad Juniper Networks

Vishnu Pavan Beeram Juniper Networks

Contributors: Colby Barth, Srihari Sangli, Chandra Ramachandran

IETF-109, November 2020, Virtual

Overview

- YANG data model for programming Network Slice Per Hop Definition (Slice-PHD) on IP/MPLS devices
 - Multiple Slice Selector options
 - Flexible and hierarchical Slice PHB(s)
 - Covers resource management in control plane and data plane
 - Mapping of a slice to a logical topology

Model Structure

```
module: ietf-network-slice-phd
+--rw network-slicing!
  +--rw network-slice-phbs
  +--rw network-slice-phb* [id]
         . . . . . . . . . . . .
  +--rw network-slices
      +--rw network-slice* [name]
             . . . . . . . . . . . .
         +--rw slice-resource-reservation
             . . . . . . . . . . . .
         +--rw slice-selectors
            +--rw slice-selector* [id]
                . . . . . . . . . . . .
         +--rw slice-phb?
                                                    ns-phb-ref
             . . . . . . . . . . . .
         +--rw slice-membership
```

Slice-PHDs

network-slices container

- Key elements
 - Slice Resource Reservation
 - Slice Selectors
 - Slice PHB
 - Slice Membership

Slice-PHBs

network-slice-phbs container

Referenced by Slice-PHDs

Slice Per-Hop-Behaviors

+-	rw network-slice-phbs	
I	+rw network-slice-phb* [id]	
I	+rw id	uint16
I	+rw (profile-type)?	
I	+:(profile)	
I	+rw profile?	string
I	+:(custom-profile)	
I		

Slice-PHBs container (network-slice-phbs)

- Carries a list of Slice-PHB entries
- Slice-PHB entry
 - Referenced by one or more Slice-PHD
 - Options:
 - Reference to a generic PHB profile
 - Custom PHB profile

Slice Resource Reservation

+	-rw s	lice-resource-reservation	
	+rv	v preference?	uint16
	+rv	w (max-bw-type)?	
	+-	:(bw-value)	
	1 1	+rw maximum-bandwidth?	uint64
I	+-	:(bw-percentage)	
	1	+rw maximum-bandwidth-percent?	
		rt-types:percentage	
I	+rv	<pre>shared-resource-groups*</pre>	uint32
	+rv	v protection	
	+-	rw backup-slice-id?	uint32
1	+-	rw (backup-bw-type)?	
		+:(backup-bw-value)	
1		+rw backup-bandwidth?	uint64
		+:(backup-bw-percentage)	
		+rw backup-bandwidth-percent?	
		rt-types:percentage	

slice-resource-reservation Container

- Slice-aware Bandwidth Engineering
- Preference-based preemption of Slice-aware TE paths
- Sharing of resources amongst a group of slices
- Slice Protection

Slice Selectors

+rw slice-selectors	
+rw slice-selector* [id]	
+rw id uint16	
+rw mpls	
+rw (ss-mpls-type)?	
+:(label-value)	
rt-types:mpls-label	
<pre> +rw label-position?</pre>	identityref
+rw label-position-offset?	uint8
+:(label-ranges)	
+rw label-range* [index]	
+rw index	string
+rw start-label?	
rt-types:mpls-label	
+rw end-label?	
rt-types:mpls-label	
+rw label-position?	
identityref	
+rw label-position-offset?	2 uint8
+rw ipv4	
+rw destination-prefix* inet:ipv4	l-prefix
+rw ipv6	
+rw (ss-ipv6-type)?	
+:(ipv6-destination)	
+rw destination-prefix*	
inet:ipv6-prefix	
<pre> +:(ipv6-flow-label)</pre>	
+rw slid-flow-labels	
+rw slid-flow-label* [slid	1]
	/6-flow-label
+rw bitmask? uint32	
<pre>+rw acl-ref* ns-acl-ref</pre>	

slice-selectors Container

- Set of data plane field selectors
- Slice Selector (SS)
 - Identify packets belonging to the given network slice
 - 16-bit ID
 - SS with the lowest ID is the default used by all the topological elements that are members of the given network slice
 - Other entries are used to override the default on select topological elements

Slice Membership

+rw sli	ce-membersh:	ip				
+rw	filter-polid	cies				
+	rw filter-po	olicy* [id]			
+	rw id					
1	uint16					
+	rw (filter-t	type)?				
l I	+:(topolog	gy-ref)				
1	+rw (to	opo-ref-	type)?			
l I		algo-id)				
1		-rw algo			uint8	
1	+: (t	te-topo-	id)			
l I	+		opology-id			
1	1	_			-global-id	
1	1	-	lient-id?		-global-id	
		+rw t	opology-ic			
l I			te-topolo	ogy-id		
l I	+: (custom-		У)			
	+rw ind					
			finity*	string		
	+rw		-	string		
			efix*		p-prefix	
1	+rw			inet:as	s-number	
	+rw exc		C' LL LL LL			
1		link-ar	finity*	string		
1			-	string		
	+rw	-	efix*	-	p-prefix s-number	
1	rw slice-sel			Inet.a:	5-IIUIIDEI	
+	ns-ss-i					
1						
+	rw slice-phł ns-phb-					
	IIS PID-	TGT				

slice-membership Container

- Set of filtering policies
 - Determine which topological elements belong the specific network slice
- Filtering Policy
 - Reference a predefined topology (or)
 - Specify rules to construct customized topology
- Slice members can optionally override the default Slice-PHB and/or the default slice selector.

Next Steps

Request review and feedback