
 dns_proxy.md

DNS Proxy

In a typical hub/spoke deployment, its very common for the WAN interfaces to have some sort of dynamic interface such as DHCP,

PPPoE, LTE etc. The 128T router can dynamically learn the DNS server address for such interfaces and can load balance the DNS

requests across those servers. The dns-proxy feature aims to provide a simple way to proxy all DNS requests originating on the LAN

side to the learned server address(es) on the WAN side without having to re-configure or update the client endpoints. This will allow

the network to better adapt to failures on the WAN interfaces while minimizing loss of connectivity from client side applications.

Overview

The common workflow for using this feature is as follows:

Advertise/Configure a DNS server for the LAN network(s)

Configure a DNS proxy service to match the advertisement

Configure the service-route to indicate the WAN interface(s) to be used for proxying the DNS requests

This document discusses the various options for the workflow above to provide general guidance on how to use this feature.

Advertise Interface Address as DNS Server

A key component for DNS proxy feature is the ability to configure a fixed address as the DNS address for the clients on the LAN side. A

typical choice is to use the 128T interface address as the DNS server address, though the feature is not limited to this choice. The

selected address can either be statically configured on the clients or configured via DHCP server (either external or 128T acting as the

DHCP server). On a linux based test system this was done via updating the /etc/resolv.conf file as shown below.

cat /etc/resolv.conf
; generated by /usr/sbin/dhclient-script
search openstacklocal
nameserver 10.10.10.1

Configuring DNS proxy service

The special dns-proxy application-type is used for creating a DNS proxy service. All the usual service configuration such as access-

policy etc is applicable to this service. The dns-proxy application-type indicates to the 128T router to perform a destination NAT on

the traffic when the session is created for the service.

admin@node1.conductor# show config running authority service lan-dns-proxy

config

 authority

 service lan-dns-proxy
 name lan-dns-proxy

 transport udp
 protocol udp

 port-range 53
 start-port 53
 exit
 exit
 address 10.10.10.1

 access-policy lan
 source lan
 permission allow
 exit

 access-policy _internal_
 source _internal_
 permission allow
 exit
 application-type dns-proxy
 exit
 exit
exit

admin@node1.conductor#

The example configuration captures all DNS traffic sent to address 10.10.10.1 interface as configured on the test client in the

previous step.

How to proxy DNS requests originating from the linux host of the 128T router

The _internal_ tenant has a special meaning on the 128T routers as it represents the traffic originating from the host OS of the

router. When the service allows the _internal_ tenant and a service-route is created for this service, the target router linux

environment is automatically configured for use with the DNS proxy. The /etc/resolv.conf is modified to point to a loopback address

within the 128T router.

cat /etc/resolv.conf
; This file has been automatically updated by 128T - DO NOT EDIT
nameserver 169.254.127.126

This allows all DNS queries (for example, as a result of dnf lookups etc) to be intercepted by 128T router and create sessions

appropriately.

Configuring Service Route(s)

When the service-route > next-hop for the dns-proxy service points to a dynamic interface such as DHCP based interface, any

learned DNS address(es) will be automatically used as destination nat target for sessions for that service. This is accomplished by

populating the next-hop > target-address configuration internally upon address resolution. An example of the service-route

configuration is as follows:

admin@node1.conductor# show config running authority router router1 node node1 device-interface inband-mgmt

config

 authority

 router router1
 name router1

 node node1
 name node1

 device-interface inband-mgmt
 name inband-mgmt
 pci-address 0000:00:03.0

 network-interface inband-mgmt-intf
 name inband-mgmt-intf
 global-id 1
 conductor true
 tenant wan
 source-nat true

 host-service ssh
 service-type ssh
 exit

 host-service web
 service-type web
 exit

 dhcp v4

 exit
 exit
 exit
 exit
 exit
exit

admin@node1.conductor#
admin@node1.conductor# show config running authority router router1 service-route dns-proxy-route

config

 authority

 router router1
 name router1

 service-route dns-proxy-route
 name dns-proxy-route
 service-name lan-dns-proxy

 next-hop node1 inband-mgmt-intf
 node-name node1
 interface inband-mgmt-intf
 target-address 8.8.8.8
 exit
 exit
 exit
 exit
exit

admin@node1.conductor#

A few key points about the service-route for a dns-proxy service type:

Multiple learned DNS addresses

If the dynamic interface learns multiple IP addresses, the 128T router will apply a round-robin load-balancing strategy amongst those IP

address. Here's how you can check the details on the learned DNS addresses.

admin@node1.conductor# show dhcp v4 router router1 name inband-mgmt-intf detail
Sat 2020-02-22 04:43:12 UTC

==
 Router
==
 Node: node1
 Device Interface: inband-mgmt
 Network Interface: inband-mgmt-intf
 Dhcp State: Resolved
 State Machine State: Bound
 Lease Start Time: Sat Feb 22 00:28:30 2020
 Lease Renewal Time: Sat Feb 22 12:28:30 2020
 Lease Rebinding Time: Sat Feb 22 18:28:30 2020
 Lease Expiration Time: Sun Feb 23 00:28:30 2020
 Learned MTU: 0 bytes
 Server Address: 192.168.1.2
 Dns Server Address:
 - 172.20.0.100
 - 172.20.0.101
 Addresses:
 Address: 192.168.1.10
 Prefix Length: 24
 Gateway: 192.168.1.1

Completed in 0.14 seconds
admin@node1.conductor#

The following example illustrates how the round-robin strategy gets applied for load-balancing the data across multiple learned

addresses for two back-to-back queries.

admin@node1.conductor# show sessions router router1 | grep dns-proxy
✔ Piping output...
 745809ea-7ada-4225-a379-4159c1e226a2 fwd lan-dns-proxy lan dpdk2
0 udp 10.10.10.11 52513 10.10.10.1 53 192.168.1.10 16398 false
4 0 days 0:00:03
 745809ea-7ada-4225-a379-4159c1e226a2 rev lan-dns-proxy lan
inband-mgmt 0 udp 172.20.0.100 53 192.168.1.10 16398 0.0.0.0 0
false 4 0 days 0:00:03
admin@node1.conductor#
admin@node1.conductor#
admin@node1.conductor# show sessions router router1 | grep dns-proxy
✔ Piping output...
 801d9495-66a4-44cf-9eea-e22731389a95 fwd lan-dns-proxy lan dpdk2
0 udp 10.10.10.11 44426 10.10.10.1 53 192.168.1.10 16399 false
5 0 days 0:00:03
 801d9495-66a4-44cf-9eea-e22731389a95 rev lan-dns-proxy lan
inband-mgmt 0 udp 172.20.0.101 53 192.168.1.10 16399 0.0.0.0 0
false 5 0 days 0:00:03
admin@node1.conductor#

Manually configured target-address

As seen in the example above the service-route > next-hop points to a DHCP interface and also specifies 8.8.8.8 as target-

address. When such manual configuration is present, all the learned address are combined with the statically configured address(es).

Based on the previous example, it means that we now have three valid DNS server targes viz. 8.8.8.8, 172.20.0.100, 172.20.0.101 .
This configuration also allow the user to configure a failsafe DNS server address in case the DHCP server did not provide any valid DNS

server addresses.

Conclusion

The dns-proxy feature can be used to greatly simply the network topoplogy while dyanmically reacting to chagnes or failures to the

upstream WAN interfaces.

